

Psycholinguistic models of sentence processing improve sentence readability ranking

David M. Howcroft¹ Vera Demberg^{1,2} Saarland Informatics Campus, Saarland University, Germany

Motivation

- Most work on readability to date has focused on document level measures of text difficulty.
- Work in natural language generation in general, and on automatic text simplification in particular, requires a notion of *sentence level* readability.

Question

Can psycholinguistic theories of on-line (human) sentence processing be leveraged to rank sentences by their 'difficulty'?

Corpora

- English Simple English Wikipedia Corpus (ESEW)
- $\triangleright \approx 120$ k pairs of English and Simple English sentences
- noisy due to inter-author variation with respect to notions of 'simplicity'

One Stop English Corpus (OSE)

- $\triangleright \approx 1,500$ triples of English sentences at 3 levels:
 - Elementary, Intermediate, and Advanced
- less noisy professionally edited

Surprisal (Hale 2001; Levy 2008)

- a.k.a. Shannon information
- measures the unpredictability of a word in context

Embedding Depth and Difference (van Schijndel et al. 2012)

estimates the amount of memory required to parse the sentence

Integration Cost (Gibson 1998, 2000)

estimates the difficulty of integrating a new discourse referent

Idea Density (Kintsch 1972; Kintsch & Keenan 1973)

- estimates the number of propositions being expressed
- approximated by proportion of words which are adjectives, verbs, adverbs, and propositions

Features and Models

Results

Feature Sets

- Surprisal: avg. and max. lexical and syntactic surprisal
- Embedding: avg. and max. embedding depth and difference
- Integration Cost: avg. and max. integration cost
- Idea Density: avg. number of propositions per word
- Baseline: word length and sentence length
- Psycholinguistic: combines surprisal, embedding, integration cost, and idea density features
- Full Model: combines baseline and psycholinguistic models

Averaged Perceptron Model

- ranking treated as classification of difference features
- chance performance = 50

80 -

Model Accuracy for Psycholinguistic Feature Sets

Psycholinguistic features improve the baseline

Overall Results

Individual and combined psycholinguistic features perform worse than the baseline

Combined model with baseline and psycholinguistic features outperforms baseline by \approx 2 percentage points.

Conclusion

Psycholinguistic features such as surprisal and embedding depth can improve performance on a readability ranking task.

¹Department of Language Science and Technology ²Department of Computer Science {howcroft,vera}@coli.uni-saarland.de